China best CHINAMFG Brand Factory Price Electric Motor Single Phase vacuum pump belt

Product Description

Product Description

 MY motors have good performance, safe and reliable operation, nice appearance, and can be maintained very conveniently, while with low noise, little vibration, light weight and simple construction.

2.This series motors can be used on household appliance, pumps, fan and recording meters, etc. Ambient temperature: -15°C≤θ≤40°C
Above sea level: not exceed 1000m
 

Protection type: IP44/ip54
Insulation class B,F
Rated voltage: 220V or 110V or customized 
Rated frequency: 50 Hz or 60 Hz
Duty :S1,S4,etc 

Model Output Voltage
(V)
Current(A) Power Factor Eff(%) Speed(r/min) Tstart/Tn Tmax/Tn Starting current
(A)
(KW) (HP)
MY561-2 0.09   0.12 220V  0.77 0.92 58 2800 0.4 1.7 3
MY562-2 0.12  0.18 220V  0.96 0.92 62 2800 0.4 1.7 3.8
MY631-2 0.18  0.25 220V  1.48 0.92 60 2800 0.4 1.7 5
MY632-2 0.25  0.33 220V   1.96 0.92 63 2800 0.4 1.7 7
MY711-2 0.37  0.5 220V  2.73 0.92 67 2800 0.35 1.7 10
MY712-2 0.55  0.75 220V  3.88 0.92 70 2800 0.33 1.7 15
MY801-2 0.75   1 220V  5.15 0.92 72 2800 0.33 1.7 20
MY802-2 1.1   1.5 220V  7.02 0.95 75 2800 0.33 1.7 30
MY90s-2 1.5   2 220V  9.44 0.95 76 2800 0.3 1.7 45
MY90l-2 2.2 3 220V  13.67 0.95 77 2800 0.3 1.7 65
MY561-4 0.06 0.08 220V  0.57 0.90 53 1400 0.4 1.7 2.8
MY562-4 0.09 0.12 220V  0.81 0.90 56 1400 0.4 1.7 3.4
MY631-4 0.12 0.18 220V  1.1 0.90 55 1400 0.4 1.7 3.5
MY632-4 0.18 0.25 220V  1.62 0.90 56 1400 0.4 1.7 5
MY711-4 0.25 0.33 220V  2.02 0.92 61 1400 0.35 1.7 7
MY712-4 0.37 0.5 220V  2.95 0.92 62 1400 0.35 1.7 10
MY801-4 0.55 0.75 220V  4.25 0.92 64 1400 0.35 1.7 15
MY802-4 0.75 1 220V  5.45 0.92 68 1400 0.32 1.7 20
MY90s-4 1.1 1.5 220V  7.45 0.95 71 1400 0.32 1.8 30
MY90l-4 1.5 2 220V  9.83 0.95 73 1400 0.3 1.8 45

Detailed Photos

 

Our Advantages

We have more than 30years on all kinds of ac motors and gearmotor ,worm reducers producing ,nice price 
What we do:
1.Stamping of lamination
2.Rotor die-casting
3.Winding and inserting – both manual and semi-automatically
4.Vacuum varnishing
5.Machining shaft, housing, end shields, etc…
6.Rotor balancing
7.Painting – both wet paint and powder coating
8.assembly
9.Packing
10.Inspecting spare parts every processing
11.100% test after each process and final test before packing.,

FAQ

Q: Do you offer OEM service?
A: Yes
Q: What is your payment term?
A: 30% T/T in advance, 70% balance when receiving B/L copy. Or irrevocable L/C.
Q: What is your lead time?
A: About 30 days after receiving deposit or original L/C.
Q: What certifiicates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Household Appliances, Power Tools
Operating Speed: Constant Speed
Number of Stator: Single-Phase
Species: My
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

3 phase motor

What is a 3-phase motor and how does it work?

A 3-phase motor is a type of electric motor that operates on a three-phase power supply. It is widely used in various industrial and commercial applications due to its efficiency, reliability, and ability to provide high torque output. Here’s a detailed explanation of what a 3-phase motor is and how it works:

A 3-phase motor consists of three windings, typically placed 120 degrees apart around the motor’s stator. These windings are energized by a balanced three-phase power supply, which generates a rotating magnetic field within the motor. The rotating magnetic field interacts with the motor’s rotor, causing it to rotate and produce mechanical power.

Here’s a step-by-step explanation of how a 3-phase motor works:

  1. Power Supply: A 3-phase motor requires a three-phase power supply, which typically consists of three alternating current (AC) voltage waveforms that are 120 degrees out of phase with each other. The power supply is connected to the motor’s three windings.
  2. Stator Windings: The stator windings are coils of wire that are wound around the motor’s stator. Each winding is connected to a different phase of the power supply. When the power supply is energized, alternating current flows through each winding, creating a magnetic field around the stator.
  3. Rotating Magnetic Field: The three-phase current flowing through the stator windings creates a rotating magnetic field. The rotating magnetic field is produced because the three phases are out of phase with each other by 120 degrees. This rotating magnetic field is responsible for the motor’s operation.
  4. Rotor: The rotor is the rotating part of the motor. It is typically made of a series of conductive bars or laminated iron cores. The rotor is placed within the rotating magnetic field created by the stator windings.
  5. Induction or Synchronous Operation: Depending on the design of the motor, it can operate as an induction motor or a synchronous motor.
    • Induction Motor: In an induction motor, the rotating magnetic field induces currents in the rotor bars through electromagnetic induction. These induced currents create a magnetic field in the rotor that interacts with the stator’s rotating magnetic field, causing the rotor to rotate. The speed at which the rotor rotates is slightly slower than the speed of the rotating magnetic field, creating a slip. The slip allows the motor to produce torque and overcome inertia or mechanical load.
  6. Mechanical Power Output: As the rotor rotates within the rotating magnetic field, it generates torque. The torque produced by the motor can be used to drive mechanical loads, such as pumps, fans, compressors, conveyors, or machinery. The motor’s speed and torque output can be controlled by adjusting the frequency or voltage of the three-phase power supply, or by implementing control strategies within the motor’s control system.

Overall, a 3-phase motor is a versatile and efficient motor that operates on a three-phase power supply. It works by creating a rotating magnetic field in the motor’s stator through energized windings. This rotating magnetic field interacts with the rotor, causing it to rotate and generate mechanical power. Whether it operates as an induction motor or a synchronous motor, the 3-phase motor is widely used in various industrial applications due to its reliable and high-performance characteristics.

3 phase motor

How do 3-phase motors contribute to the efficiency of industrial processes?

3-phase motors play a significant role in enhancing the efficiency of industrial processes. Here’s a detailed explanation of how these motors contribute to improved efficiency:

  • Power-to-Weight Ratio: 3-phase motors offer a high power-to-weight ratio, making them compact and lightweight compared to other motor types. This characteristic allows for more efficient use of space and facilitates easier installation and transportation in industrial settings.
  • High Torque Output: 3-phase motors are known for their high torque output, enabling them to efficiently drive heavy loads and handle demanding industrial applications. The high torque capability ensures that motors can start and accelerate loads quickly and effectively, minimizing time and energy wastage.
  • Efficient Power Conversion: 3-phase motors convert electrical power into mechanical power with high efficiency. Compared to single-phase motors, 3-phase motors experience less power loss, deliver smoother operation, and have higher power factor values. This efficient power conversion contributes to energy savings and reduces operating costs.
  • Variable Speed Control: Many 3-phase motors are equipped with variable frequency drives (VFDs) or adjustable speed drives (ASDs). These devices allow for precise control of motor speed and torque, enabling optimal matching of motor output to the requirements of the industrial process. By adjusting the motor speed to match the load, energy consumption can be minimized, resulting in improved efficiency.
  • Multiple Starters and Reversibility: 3-phase motors support multiple starters, allowing for convenient control of motor operation and integration into complex industrial systems. Additionally, these motors can easily be reversed, enabling bi-directional operation. This flexibility enhances process efficiency by accommodating different operational modes and facilitating seamless integration into various applications.
  • Reliability and Durability: 3-phase motors are known for their robust construction and high reliability. They are designed to withstand the demanding conditions of industrial environments, including high temperatures, vibrations, and varying loads. The reliability and durability of these motors contribute to uninterrupted operation, reduced downtime, and improved overall process efficiency.
  • Compatibility with Automation: 3-phase motors are well-suited for integration into automated industrial systems. They can easily be controlled and monitored through programmable logic controllers (PLCs) or other automation technologies. This compatibility with automation enables precise coordination of motor operation with other process variables, optimizing efficiency and productivity.
  • Wide Range of Applications: 3-phase motors find application in a wide range of industrial processes, including pumps, compressors, conveyors, fans, mixers, and more. Their versatility and adaptability make them suitable for various industries, from manufacturing and production to mining, oil and gas, and HVAC systems. By providing reliable and efficient power to drive these processes, 3-phase motors contribute to improved overall industrial efficiency.

Overall, 3-phase motors offer numerous advantages that enhance the efficiency of industrial processes. Their compact design, high torque output, efficient power conversion, variable speed control, and compatibility with automation technologies make them a preferred choice for a wide range of industrial applications. By utilizing 3-phase motors, industrial processes can achieve higher energy efficiency, improved productivity, and overall cost savings.

3 phase motor

How do 3-phase motors impact the overall productivity of manufacturing processes?

3-phase motors have a significant impact on the overall productivity of manufacturing processes. Here’s a detailed explanation of how they contribute to increased productivity:

  • High Power and Efficiency:
    • 3-phase motors are known for their high power output and efficiency. They can deliver substantial torque even at low speeds, making them suitable for a wide range of industrial applications.
    • The high efficiency of 3-phase motors means that they can convert a larger portion of the electrical input power into mechanical output power. This results in less energy wastage and lower operating costs for manufacturing processes.
  • Flexible Speed Control:
    • 3-phase motors can be easily controlled and adjusted in terms of speed and torque output. This flexibility allows manufacturers to optimize motor performance based on the specific requirements of different manufacturing processes.
    • By utilizing control devices such as variable frequency drives (VFDs) or adjustable speed drives (ASDs), the speed of 3-phase motors can be precisely regulated. This enables manufacturers to match the motor speed to the process demands, resulting in improved efficiency and productivity.
  • Reliable and Durable:
    • 3-phase motors are known for their reliability and durability. They are designed to withstand the harsh operating conditions often found in manufacturing environments.
    • The robust construction of 3-phase motors allows them to operate continuously for extended periods without frequent maintenance or breakdowns. This minimizes downtime and ensures uninterrupted production in manufacturing processes.
  • Versatility and Adaptability:
    • 3-phase motors are highly versatile and can be used in a wide range of manufacturing processes. They can power various types of machinery and equipment, including pumps, compressors, conveyors, mixers, and machining tools.
    • 3-phase motors can handle different load variations and speed requirements, allowing manufacturers to adapt to changing production needs. This versatility enables efficient operation across a range of manufacturing applications and industries.
  • Integration with Automation:
    • 3-phase motors can be seamlessly integrated into advanced control systems and automation technologies. This integration allows for centralized control, real-time monitoring, and coordination of motor performance within manufacturing processes.
    • By integrating 3-phase motors with control devices such as variable frequency drives (VFDs) and programmable logic controllers (PLCs), manufacturers can achieve precise control, data logging, and remote monitoring capabilities. This enhances process control, optimization, and productivity.

Overall, 3-phase motors play a crucial role in enhancing the overall productivity of manufacturing processes. Their high power, efficiency, flexible speed control, reliability, and adaptability contribute to improved efficiency, reduced energy consumption, increased uptime, and optimized performance in a wide range of industrial applications.

China best CHINAMFG Brand Factory Price Electric Motor Single Phase   vacuum pump belt	China best CHINAMFG Brand Factory Price Electric Motor Single Phase   vacuum pump belt
editor by CX 2024-05-06