China Best Sales 380V Yej Series AC 3 Phase AC Induction Complete Copper High Quality Electric Motor with Magnetic Braking vacuum pump brakes

Product Description

380V YEJ series  80S-225M-2 AC 3 phase ac induction Complete Copper High quality electric motor with magnetic braking

Factory advantage

1.30 years of history
2. Competitive prices
3. Quality Assurance
Four. Fast Delivery Time: General model about 15-20 days, special model about 30 days
Each process is 100% tested and 100% selective in raw materials
5. Be Efficient
6. Low Noise
7. Live Long
8. Save Energy
9. Slight vibration
10. Professional service/Patience
11. Warranty period: 12 months from the date of delivery
Main Markets: South , Europe, Middle East, Southest Asia, Africa, etc

Product description

     The series of brake motors are motor non-drag shaft end equipped with electromagnetic brake, when the motor When the power is lost, the brake disc of the electromagnetic brake will automatically press on the back cover of the motor to produce friction braking force Cabinet, so that the motor stop, no-load braking time random number from small to large, for 0.15 ~ 0.45 s.
     The brake power supply must drive the motor. The power supply is synchronized. Yej series motors are widely used in.
     Processing machine tools and conveying machinery and packaging, carpentry, food, chemical, textile, construction, stores Rolling Door and other mechanical action driving force.

Conditions of use

Base Center height: 63-160mm.
Controller Power: Base Center H < 100mm, AC 220V (99V after rectification)
Base center height: H > 112mm, AC 380V (170V after rectification)
Power Range: 0.12 ~ 45kW
Rated voltage: 380V (other voltages subject to separate agreement)
Rated frequency: 50 Hz (or 60 Hz)
Protection level: IP54(or IP55)
Insulation Grade: B/F working system: S 1
If there is no other request in the order or agreement, terminal box standard position is at the right side of the frame; data above may be changed without prior notice.   

WHY  CHOOSE  US  ?
1.We are professional  electric motor manufacture for  20 years since 1996.

2.We have best quality materials to make our electric motors best performance.

3.Our products are 100% brand new , 100% cooper wire , 100% output.

4.We have advanced and automated machines such as high speed punching machines, swing punching machines, machines to form the rotors ,stators etc. in 1 piece, automated packing machines which can produce nice appearance and good performance motors while decrease the labor cost and mechanical loss .

5.We have professional financial department who are good at calculating and controlling the cost and capital operation which could make most favorable prices for our customers.

6.We have a strong R&D team, which can develop and produce products according to drawings or samples provided by customers.

7.We have our own pump and motor production line, raw materials processing, factory direct sales, inexpensive.

8.We are only 200 kilometers away from HangZhou port, which is very convenient for export.

Motor decomposition
                                                                                                                                                                                                                                                                                                                                                                                                         

1.BFlange 9.Key 17.Rear endshield 25.Terminal box cover 33.Brasslug
2.B4Flange 10.Rotor 18.Fan 26.Screw  
3.Front  endshield 11.Stator 19.Fan cowl 27.Earth mark  
4.Shaft cover 12.Pedestal 20.FancowlScrew 28.Brass washer  
5.Spring washer 13.Pedestal bolt 21.Fan clamp 29.Deductioncap  
6.Vring Oil seal 14.Nameplate 22.Cable gland 30.Brassnet  
7.Bolt 15.Main frame 23.Terminal box base 31.Termiani board  
8.Bearing 16.Wave washer 24.Gasket 32.Leather washer  

Installation dimensions

Model Output
kW
Rated Ampere
A
RPM Eff.% Power Factor Rated Torque
N.m
LRT
FLT
Tst
TN
LRA
FLA
Ist
IN
BDT
FLT
Tmax
TN
dB(A)
Synchronous speed   3000 r/min
YE3EJ80M1-2 0.75 1.7 2870 80.7 0.83 2.50 2.2 7.0 2.3 67
YE3EJ80M2-2 1.1 2.4 2875 82.7 0.83 3.65 2.2 7.3 2.3 71
YE3EJ90S-2 1.5 3.2 2880 84.2 0.84 4.97 2.2 7.6 2.3 75
YE3EJ90L-2 2.2 4.6 2880 85.9 0.85 7.29 2.2 7.6 2.3 75
YE3EJ100L-2 3 6.0 2880 87.1 0.87 9.95 2.2 7.8 2.3 79
YE3EJ112M-2 4 7.8 2915 88.1 0.88 13.1 2.2 8.3 2.3 79
YE3EJ132S1-2 5.5 10.6 2935 89.2 0.88 17.9 2.0 8.3 2.3 83
YE3EJ132S2-2 7.5 14.4 2930 90.1 0.88 24.4 2.0 7.9 2.3 83
YE3EJ160M1-2 11 20.6 2950 91.2 0.89 35.6 2.0 8.1 2.3 87
YE3EJ160M2-2 15 27.9 2945 91.9 0.89 48.6 2.0 8.1 2.3 87
YE3EJ160L-2 18.5 34.2 2945 92.4 0.89 60.0 2.0 8.2 2.3 87
YE3EJ180M-2 22 41.8 2950 92.7 0.89 71.2 2.0 8.2 2.3 92
YE3EJ200L1-2 30 54.7 2965 93.3 0.89 96.6 2.0 7.6 2.3 92
YE3EJ200L2-2 37 67.4 2965 93.7 0.89 119 2.0 7.6 2.3 95
YE3EJ225M-2 45 84.4 2965 94.0 0.90 145 2.0 7.7 2.3 97
YE3EJ250M-2 55 98.5 2975 94.3 0.90 177 2.0 7.7 2.3 98
YE3EJ280S-2 75 134 2975 94.7 0.90 241 1.8 7.1 2.3 99
YE3EJ280M-2 90 160 2975 95.0 0.90 289 1.8 7.1 2.3 99
YE3EJ315S-2 110 197 2975 95.2 0.90 353 1.8 7.1 2.3 101
YE3EJ315M-2 132 236 2975 95.4 0.90 424 1.8 7.1 2.3 101
YE3EJ315L1-2 160 282 2975 95.6 0.91 514 1.8 7.2 2.3 103
YE3EJ315L2-2 200 352 2975 95.8 0.91 642 1.8 7.2 2.2 103
Model Output
kW
Rated Ampere
A
RPM Eff.% Power Factor Rated Torque
N.m
LRT
FLT
Tst
TN
LRA
FLA
Ist
IN
BDT
FLT
Tmax
TN
dB(A)
Synchronous speed   1500 r/min
YE3EJ80M1-4 0.55 1.4 1430 80.6 0.75 3.67 2.3 6.0 2.3 61
YE3EJ80M2-4 0.75 1.8 1430 82.5 0.75 5.01 2.3 6.6 2.3 61
YE3EJ90S-4 1.1 2.6 1430 84.1 0.76 7.35 2.3 6.8 2.3 67
YE3EJ90L-4 1.5 3.5 1440 85.3 0.77 9.95 2.3 7.0 2.3 67
YE3EJ100L1-4 2.2 4.8 1440 86.7 0.81 14.6 2.3 7.6 2.3 70
YE3EJ100L2-4 3 6.3 1440 87.7 0.82 19.9 2.3 7.6 2.3 70
YE3EJ112M-4 4 8.4 1455 88.6 0.82 26.3 2.2 7.8 2.3 74
YE3EJ132S-4 5.5 11.2 1465 89.6 0.83 35.9 2.0 7.9 2.3 78
YE3EJ132M-4 7.5 15.0 1465 90.4 0.84 48.9 2.0 7.5 2.3 78
YE3EJ160M-4 11 21.5 1470 91.4 0.85 71.5 2.0 7.7 2.3 82
YE3EJ160L-4 15 28.8 1470 92.1 0.86 97.4 2.0 7.8 2.3 82
YE3EJ180M-4 18.5 35.3 1470 92.6 0.86 120 2.0 7.8 2.3 82
YE3EJ180L-4 22 41.8 1470 93.0 0.86 143 2.0 7.8 2.3 82
YE3EJ200L-4 30 56.6 1475 93.6 0.86 194 2.0 7.3 2.3 84
YE3EJ225S-4 37 69.6 1480 93.9 0.86 239 2.0 7.4 2.3 84
YE3EJ225M-4 45 84.4 1480 94.2 0.86 290 2.0 7.4 2.3 84
YE3EJ250M-4 55 103 1485 94.6 0.84 354 2.0 7.4 2.3 86
YE3EJ280S-4 75 136 1490 95.0 0.88 481 2.0 6.9 2.3 89
YE3EJ280M-4 90 163 1490 95.2 0.88 577 2.0 6.9 2.3 89
YE3EJ315S-4 110 199 1485 95.4 0.89 707 2.0 7.0 2.2 96
YE3EJ315M-4 132 241 1485 95.6 0.88 849 2.0 7.0 2.2 96
YE3EJ315L1-4 160 288 1485 95.8 0.89 1571 2.0 7.1 2.2 97
YE3EJ315L2-4 200 359 1485 96.0 0.90 1286 2.0 7.1 2.2 97
Synchronous speed  1000 r/min
YE3EJ80M1-6 0.37 1.2 910 68.0 0.70 3.88 1.9 5.5 2.1 58
YE3EJ80M2-6 0.55 1.6 925 72.0 0.71 5.68 1.9 5.5 2.1 58
YE3EJ90S-6 0.75 2.0 945 78.9 0.71 7.59 2.0 6.0 2.1 61
YE3EJ90L-6 1.1 2.8 950 81.0 0.73 11.1 2.0 6.0 2.1 65
YE3EJ100L-6 1.5 3.8 950 82.5 0.73 15.1 2.0 6.5 2.1 67
YE3EJ112M-6 2.2 5.4 965 84.3 0.74 21.8 2.0 6.6 2.1 74
YE3EJ132S-6 3 7.2 975 85.6 0.74 29.4 1.9 6.8 2.1 71
YE3EJ132M1-6 4 9.5 975 86.8 0.74 39.2 1.9 6.8 2.1 71
YE3EJ132M2-6 5.5 12.7 975 88.0 0.75 53.9 1.9 7.0 2.1 71
YE3EJ160M-6 7.5 16.2 980 89.1 0.79 73.1 2.0 7.0 2.1 75
YE3EJ160L-6 11 23.1 980 90.3 0.80 107 2.0 7.2 2.1 75
YE3EJ180L-6 15 30.9 980 91.2 0.81 146 1.9 7.3 2.1 78
YE3EJ200L1-6 18.5 37.8 985 91.7 0.81 179 1.9 7.3 2.1 78
YE3EJ200L2-6 22 44.8 985 92.2 0.81 213 1.9 7.4 2.1 78

 

Model Output
kW
Rated Ampere
A
RPM Eff.% Power Factor Rated Torque
N.m
LRT
FLT
Tst
TN
LRA
FLA
Ist
IN
BDT
FLT
Tmax
TN
dB(A)
Synchronous speed   1000 r/min
YE3EJ225M-6 30 59.1 985 92.9 0.83 291 1.9 6.9 2.1 81
YE3EJ250M-6 37 71.7 985 93.3 0.84 359 1.9 7.1 2.1 83
YE3EJ280S-6 45 85.8 990 93.7 0.85 434 1.9 7.3 2.0 85
YE3EJ280M-6 55 103 990 94.1 0.86 531 1.9 7.3 2.0 85
YE3EJ315S-6 75 145 990 94.6 0.84 723 1.9 6.6 2.0 90
YE3EJ315M-6 90 171 990 94.9 0.85 868 1.9 6.7 2.0 90
YE3EJ315L1-6 110 209 990 95.1 0.85 1061 1.9 6.7 2.0 90
YE3EJ315L2-6 132 247 990 95.4 0.86 1273 1.9 6.8 2.0 90
Synchronous speed   750 r/min
YE3EJ80M1-8 0.18 0.80 700 56.0 0.61 2.46 1.8 3.3 1.9 54
YE3EJ80M2-8 0.25 1.1 700 59.0 0.61 3.41 1.8 3.3 1.9 54
YE3EJ90S-8 0.37 1.4 695 66.0 0.61 5.08 1.8 4.0 2.0 58
YE3EJ90L-8 0.55 2.0 695 70.0 0.61 7.56 1.8 4.0 2.0 58
YE3EJ100L1-8 0.75 2.3 705 73.5 0.67 10.2 1.8 4.0 2.0 61
YE3EJ100L2-8 1.1 3.2 705 76.5 0.69 14.9 1.8 4.0 2.0 61
YE3EJ112M-8 1.5 4.2 715 77.5 0.70 20.0 1.8 4.0 2.0 63
YE3EJ132S-8 2.2 5.9 730 80.0 0.71 28.8 1.8 5.5 2.2 66
YE3EJ132M-8 3 7.6 730 82.5 0.73 39.2 1.8 5.5 2.2 66
YE3EJ160M1-8 4 9.8 725 85.0 0.73 52.7 1.9 6.0 2.2 69
YE3EJ160M2-8 5.5 13.1 725 86.0 0.74 72.4 1.9 6.0 2.2 69
YE3EJ160L-8 7.5 17.4 730 87.5 0.75 98.1 1.9 6.0 2.2 72
YE3EJ180L-8 11 25.0 725 89.0 0.75 145 1.9 6.0 2.2 72
YE3EJ200L-8 15 33.2 730 90.4 0.76 196 2.0 6.5 2.2 75
YE3EJ225S-8 18.5 40.6 735 91.2 0.76 240 2.0 6.5 2.2 75
YE3EJ225M-8 22 46.8 735 91.5 0.78 286 2.0 6.5 2.2 75
YE3EJ250M-8 30 62.6 735 92.2 0.79 390 1.9 6.5 2.0 77
YE3EJ280S-8 37 76.5 740 93.0 0.79 478 1.8 6.0 2.0 78
YE3EJ280M-8 45 92.6 740 93.5 0.79 581 1.8 6.0 2.0 78
YE3EJ315S-8 55 111 740 93.8 0.81 710 1.8 6.5 2.0 84
YE3EJ315M-8 75 151 740 94.0 0.81 968 1.8 6.5 2.0 85
YE3EJ315L1-8 90 181 740 94.5 0.81 1161 1.8 6.5 2.0 85
YE3EJ315L2-8 110 218 740 94.8 0.82 1420 1.8 6.5 2.0 85


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Power Tools
Operating Speed: High Speed
Number of Stator: Three-Phase
Species: Yej
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

3 phase motor

What are the key components of a typical 3-phase motor?

A typical 3-phase motor consists of several key components that work together to convert electrical energy into mechanical energy. Here’s a detailed explanation of the key components of a typical 3-phase motor:

  • Stator: The stator is the stationary part of the motor and contains the core, windings, and other structural components. It consists of a laminated iron core with slots where the motor windings are placed. The stator windings are connected to the power supply and create a rotating magnetic field when energized.
  • Rotor: The rotor is the rotating part of the motor and is located inside the stator. It consists of a laminated iron core with conductive bars or coils embedded in it. The rotor is designed to rotate within the magnetic field generated by the stator windings. The interaction between the stator’s rotating magnetic field and the rotor’s conductive elements induces currents in the rotor, creating a torque that drives the rotation of the motor.
  • Windings: The windings are conductive coils of wire that are wound around the stator slots. In a 3-phase motor, there are typically three sets of windings, each spaced 120 degrees apart. These windings are designed to carry the three-phase alternating current (AC) from the power supply. The arrangement and connection of the windings create a rotating magnetic field in the motor, which interacts with the rotor to produce torque and rotation.
  • Power Supply Connections: The motor has terminals or leads for connecting it to the three-phase power supply. The power supply connections are typically labeled as L1, L2, and L3, corresponding to the three phases of the power supply. These connections provide the alternating current required to energize the stator windings and create the rotating magnetic field.
  • Bearings: Bearings are used to support the rotor and allow it to rotate smoothly within the stator. The motor typically has two bearings, one at each end of the rotor shaft. These bearings reduce friction and enable the efficient transfer of rotational motion from the rotor to the motor’s load.
  • Shaft: The shaft is a cylindrical component that extends from the rotor and serves as the mechanical link between the motor and the load. The shaft transfers the rotational motion generated by the motor to the connected equipment or machinery.
  • Housing or Frame: The motor is enclosed in a housing or frame that provides protection and support for the internal components. The housing is typically made of a durable material such as metal or plastic and is designed to withstand the operating conditions of the motor.
  • Cooling System: Many 3-phase motors incorporate a cooling system to dissipate heat generated during operation. This may include cooling fins on the motor housing, fan blades attached to the rotor shaft, or a separate cooling fan. Efficient cooling is essential to maintain optimal motor performance and prevent overheating.

These are the key components of a typical 3-phase motor. Each component plays a crucial role in the motor’s operation, from generating the rotating magnetic field to transferring mechanical energy to the load. Understanding these components is essential for troubleshooting, maintenance, and proper operation of 3-phase motors.

3 phase motor

How do 3-phase motors contribute to the efficiency of industrial processes?

3-phase motors play a significant role in enhancing the efficiency of industrial processes. Here’s a detailed explanation of how these motors contribute to improved efficiency:

  • Power-to-Weight Ratio: 3-phase motors offer a high power-to-weight ratio, making them compact and lightweight compared to other motor types. This characteristic allows for more efficient use of space and facilitates easier installation and transportation in industrial settings.
  • High Torque Output: 3-phase motors are known for their high torque output, enabling them to efficiently drive heavy loads and handle demanding industrial applications. The high torque capability ensures that motors can start and accelerate loads quickly and effectively, minimizing time and energy wastage.
  • Efficient Power Conversion: 3-phase motors convert electrical power into mechanical power with high efficiency. Compared to single-phase motors, 3-phase motors experience less power loss, deliver smoother operation, and have higher power factor values. This efficient power conversion contributes to energy savings and reduces operating costs.
  • Variable Speed Control: Many 3-phase motors are equipped with variable frequency drives (VFDs) or adjustable speed drives (ASDs). These devices allow for precise control of motor speed and torque, enabling optimal matching of motor output to the requirements of the industrial process. By adjusting the motor speed to match the load, energy consumption can be minimized, resulting in improved efficiency.
  • Multiple Starters and Reversibility: 3-phase motors support multiple starters, allowing for convenient control of motor operation and integration into complex industrial systems. Additionally, these motors can easily be reversed, enabling bi-directional operation. This flexibility enhances process efficiency by accommodating different operational modes and facilitating seamless integration into various applications.
  • Reliability and Durability: 3-phase motors are known for their robust construction and high reliability. They are designed to withstand the demanding conditions of industrial environments, including high temperatures, vibrations, and varying loads. The reliability and durability of these motors contribute to uninterrupted operation, reduced downtime, and improved overall process efficiency.
  • Compatibility with Automation: 3-phase motors are well-suited for integration into automated industrial systems. They can easily be controlled and monitored through programmable logic controllers (PLCs) or other automation technologies. This compatibility with automation enables precise coordination of motor operation with other process variables, optimizing efficiency and productivity.
  • Wide Range of Applications: 3-phase motors find application in a wide range of industrial processes, including pumps, compressors, conveyors, fans, mixers, and more. Their versatility and adaptability make them suitable for various industries, from manufacturing and production to mining, oil and gas, and HVAC systems. By providing reliable and efficient power to drive these processes, 3-phase motors contribute to improved overall industrial efficiency.

Overall, 3-phase motors offer numerous advantages that enhance the efficiency of industrial processes. Their compact design, high torque output, efficient power conversion, variable speed control, and compatibility with automation technologies make them a preferred choice for a wide range of industrial applications. By utilizing 3-phase motors, industrial processes can achieve higher energy efficiency, improved productivity, and overall cost savings.

3 phase motor

How does a 3-phase motor ensure consistent and reliable performance in machinery?

A 3-phase motor is designed to ensure consistent and reliable performance in machinery. Here’s a detailed explanation of how it achieves this:

  • Rotating Magnetic Field:
    • A 3-phase motor operates by creating a rotating magnetic field in its stator. This rotating magnetic field induces a current in the rotor, causing it to rotate.
    • The design of the 3-phase motor, with three separate windings spaced 120 degrees apart, ensures a smooth and continuous rotation of the magnetic field. This results in a consistent and reliable rotation of the motor’s rotor.
  • Power Distribution:
    • 3-phase motors are typically connected to a 3-phase power supply. The three phases of the power supply provide a balanced and continuous flow of electrical power to the motor.
    • This balanced distribution of power across the three phases helps maintain a consistent and steady supply of electrical energy to the motor. It ensures that the motor receives a continuous and reliable power source, minimizing fluctuations and interruptions in performance.
  • Higher Efficiency:
    • Compared to single-phase motors, 3-phase motors are known for their higher efficiency and smoother operation. The balanced three-phase power supply and the rotating magnetic field contribute to this superior performance.
    • The balanced power distribution reduces power losses and minimizes voltage drops, resulting in improved energy efficiency. Additionally, the rotating magnetic field provides a more uniform torque output, reducing vibrations and ensuring smoother operation.
  • Robust Construction:
    • 3-phase motors are constructed to withstand the demanding conditions often encountered in industrial machinery.
    • Their robust design, including sturdy frames, high-quality materials, and effective cooling mechanisms, enhances their durability and reliability. This allows 3-phase motors to consistently deliver reliable performance, even in challenging environments.
  • Motor Protection:
    • To ensure reliable performance, 3-phase motors are equipped with various protective features.
    • These may include thermal overload protection, which safeguards the motor against excessive heat by monitoring the motor’s temperature and tripping a protective device if it exceeds a safe threshold.
    • Other protective features may include voltage and current monitoring, short circuit protection, and phase failure protection. These mechanisms help prevent damage to the motor and ensure its consistent and reliable operation.

Overall, a 3-phase motor ensures consistent and reliable performance in machinery through its design characteristics, balanced power distribution, higher efficiency, robust construction, and built-in protective features. These elements work together to deliver smooth operation, minimal interruptions, and long-term reliability, making 3-phase motors a preferred choice for a wide range of industrial applications.

China Best Sales 380V Yej Series AC 3 Phase AC Induction Complete Copper High Quality Electric Motor with Magnetic Braking   vacuum pump brakesChina Best Sales 380V Yej Series AC 3 Phase AC Induction Complete Copper High Quality Electric Motor with Magnetic Braking   vacuum pump brakes
editor by CX 2024-04-30