China OEM 110kw 12000rpm Air Compressor Permanent Magnet Motor and VFD AC 3-Phase Industrial vacuum pump belt

Product Description

Air Compressor Permanent Magnet Motor and VFD  110kw 12000rpm AC 3-phase Industrial

Product Feature
1.Suitable for the 12000rpm Rated Speed
2.Reserve a large margin of security
3.High power & High torque
4.High efficiency 
5.Small size 
6.Low noise low vibration
7.The autonomous patented cooling structure

Specifications
Voltage: 380V AC/540V DC
Rated Power: 110KW
Rated Speed:12000rpm
Isolation: H
Cooling Method: Oil Cooling
Ingress Protection:IP67(IP54 option)
Duty type: S1
Pole:4
Installation: B3,B5,B35
Max Net Weight: 105kg

Above price includes VFD cost

Application:
high speed compressor, fan, pump

Customer Case 

Other motors you will be interested in

Motor type Voltage
(V AC)
Rated power
(kW)
Rated torque (N.m) Rated speed
(rpm)
Efficiency
(%)
Duty type  Insulation   Ingress protection Pole Number Weight
(kg)
Cooling Method position signal
SRPM160H4XO15 380 15 5.96 24000 96.5 S1 H/F IP67 4 12 Oil  Resolver
SRPM160H4XO75 380 75 35.8 20000 96.5 S1 H/F IP67 4 44 Oil  Resolver
SRPM160H4XO90 380 90 43 20000 96.5 S1 H/F IP67 4 48 Oil  Resolver
SRPM205H4XO110 380 110 52.5 20000 96.5 S1 H/F IP67 4 76 Oil  Resolver
SRPM205H4XO160 380 160 76.4 20000 96.5 S1 H/F IP67 4 86 Oil  Resolver
SRPM205H4XO200 380 200 95.5 20000 96.5 S1 H/F IP67 4 95 Oil  Resolver

FAQ
1. Can performanent magnet synchronous motor be used as generator? 

Yes. Permanent magnet synchronous motor  can work as a generator because of its special working theory. If it runs CW as a motor, then runs CCW as a generator. But please kindly note, if when you want to work it as a generator, you need to change a suitable motor controller with AFE function
 
2. Why can not directly use 3 phase ac supply voltage to start permanent magnet synchronous motor? 
Becuase rotor is with big innertia, and magetic files spins so fast that static rotor has no way to spin with magetic filed. 
 
3. Any special technical request on this motor’s VFD driver? And Do you have such driver? 
Permanent magnet synchronous motor’s driver should be vector control VFD with special inner software, such as CHINAMFG 6SE70 series, Yakawa CR5 series, ABB ACS800 series, CHINAMFG A740 series, B&R P84 and P74 series, etc.. Yes, our MH300 series VFD matches with this motor. 
 
4. Is there any protective measures to defend permanent magnet rotor from failure? 
Yes, each permanent magnet rotor passes corrossion resistance, consistency, high temperature demagnetization test, linear demagnetization test, etc. Its demagnetization index is within 2%. But if working environment is serious oxiditive corrosion, kindly advise for higher protection level. 
 
5. Where is this permanent magnet synchronous motor normally used to? 
This permanent magnet synchronous motor is normally used to variable frequency speed situation

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 32000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

3 phase motor

What are the common applications of 3-phase motors?

3-phase motors find widespread use in various industrial, commercial, and residential applications. Their efficiency, reliability, and ability to provide high torque output make them suitable for a wide range of tasks. Here’s a detailed explanation of the common applications of 3-phase motors:

  • Industrial Machinery: 3-phase motors are extensively used in industrial machinery, including pumps, compressors, fans, blowers, mixers, conveyors, and machine tools. These motors provide the necessary power and torque to drive heavy-duty equipment and ensure reliable operation in manufacturing facilities, factories, and processing plants.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often rely on 3-phase motors for their operation. These motors power the fans, blowers, and compressors in HVAC units, ensuring efficient air circulation, temperature control, and refrigeration in commercial and residential buildings, offices, hospitals, and shopping malls.
  • Pumps and Water Systems: 3-phase motors are commonly used in pumps for water supply systems, irrigation systems, wastewater treatment plants, and industrial pumping applications. These motors provide the necessary power to move water, fluids, or other liquids efficiently and reliably.
  • Electric Vehicles: Electric vehicles (EVs) and hybrid electric vehicles (HEVs) utilize 3-phase motors for propulsion. These motors provide the necessary torque and power to drive the vehicle’s wheels, offering efficient and eco-friendly transportation solutions.
  • Industrial Robotics: 3-phase motors play a crucial role in industrial robotics, where precise and dynamic motion control is required. These motors provide the necessary power and torque to actuate the robotic arms, joints, and end-effectors, enabling precise movement and manipulation in manufacturing, assembly, and automation processes.
  • Machine Tools: Machine tools, such as lathes, milling machines, grinders, and CNC machines, rely on 3-phase motors for their operation. These motors provide the rotational power and control required for cutting, shaping, and machining various materials in metalworking, woodworking, and fabrication industries.
  • Oil and Gas Industry: The oil and gas industry extensively employs 3-phase motors in various applications, including pumps for oil extraction and transportation, compressors for gas compression, and fans for ventilation in refineries and petrochemical plants.
  • Renewable Energy Systems: Wind turbines and solar tracking systems often utilize 3-phase motors. These motors enable efficient conversion of wind or solar energy into electrical energy, contributing to the generation of clean and sustainable power.
  • Food Processing and Packaging: 3-phase motors are commonly found in food processing and packaging equipment, such as mixers, grinders, slicers, conveyors, and filling machines. These motors provide the power and control required for efficient and hygienic processing, packaging, and handling of food products.

These are just a few examples of the common applications of 3-phase motors. Their versatility, reliability, and ability to deliver high torque output make them suitable for a wide range of tasks across various industries and sectors.

3 phase motor

What factors should be considered when selecting a 3-phase motor for an application?

When selecting a 3-phase motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed explanation of the key factors to consider:

  • Power Requirements: The power requirements of the application should be carefully evaluated. Determine the required horsepower (HP) or kilowatt (kW) rating of the motor based on the load characteristics, such as the torque and speed requirements. Consider both the continuous power requirements and any intermittent or peak power demands that the motor may experience during operation.
  • Voltage and Frequency: Verify the available voltage and frequency of the power supply in the application. Ensure that the motor’s voltage and frequency ratings match the power supply to ensure compatibility and safe operation. Common voltage ratings for 3-phase motors include 208V, 230V, 460V, and 575V, while frequencies are typically 50Hz or 60Hz.
  • Motor Speed: Determine the required speed of the motor for the application. Depending on the specific requirements, you may need a motor with a fixed speed, multiple speed options, or variable speed capabilities. Consider the motor’s synchronous speed, which is determined by the number of poles and the power supply frequency, and ensure it aligns with the desired operating speed.
  • Motor Enclosure: The motor enclosure should be selected based on the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, corrosive substances, and the presence of flammable or explosive materials. Common motor enclosures include open drip-proof (ODP), totally enclosed fan-cooled (TEFC), and explosion-proof enclosures.
  • Efficiency: Energy efficiency is an important consideration to minimize operating costs and environmental impact. Look for motors that meet or exceed applicable efficiency standards, such as the NEMA Premium efficiency standards in the United States or the IE efficiency classes defined by the International Electrotechnical Commission (IEC).
  • Motor Size and Mounting: Consider the physical size and mounting requirements of the motor, ensuring it fits within the available space and can be securely mounted. Check the motor’s frame size, which indicates the physical dimensions and mounting compatibility, such as NEMA frame sizes in the United States or IEC frame sizes internationally.
  • Starting Method: Evaluate the starting requirements of the application. Depending on the load characteristics and the power supply capacity, you may need a motor with specific starting methods, such as direct-on-line (DOL) starting, reduced voltage starting (e.g., star-delta or autotransformer starting), or electronic soft starters. Consider the starting torque and current requirements to ensure successful motor startup.
  • Overload Protection: Determine the type of overload protection required for the motor. Overload protection devices, such as thermal overload relays or electronic motor protection relays, help prevent motor damage due to excessive heat or current overload. Select an appropriate overload protection device based on the motor’s power rating and the specific application requirements.
  • Reliability and Serviceability: Consider the reliability and serviceability aspects of the motor. Look for motors from reputable manufacturers with a track record of producing reliable products. Evaluate the availability of spare parts, technical support, and service centers for maintenance and repairs. Additionally, consider factors such as motor lifespan, bearing design, and ease of access for maintenance tasks.
  • Compliance and Certifications: Ensure that the selected motor complies with relevant industry standards and certifications, such as NEMA, IEC, UL (Underwriters Laboratories), CSA (Canadian Standards Association), or specific industry requirements. Compliance with these standards ensures that the motor meets safety, performance, and quality standards.

Considering these factors when selecting a 3-phase motor helps ensure that the motor is well-suited for the application, delivers optimal performance, and operates reliably and efficiently over its lifespan.

3 phase motor

How do 3-phase motors handle variations in voltage and frequency?

3-phase motors are designed to handle variations in voltage and frequency within certain limits. Here’s a detailed explanation of how they handle these variations:

  • Voltage Variations:
    • 3-phase motors are typically designed to operate within a specific voltage range. As long as the applied voltage remains within this range, the motor can function properly.
    • When the voltage supplied to a 3-phase motor varies, the motor’s performance may be affected. If the voltage drops significantly below the rated voltage, the motor may experience reduced torque and power output. Conversely, if the voltage exceeds the rated value, the motor may draw excessive current, leading to overheating and potential damage.
    • To handle voltage variations, 3-phase motors often incorporate protective devices such as thermal overload relays or motor protection circuits. These devices can detect abnormal operating conditions caused by voltage fluctuations and take appropriate actions, such as shutting down the motor or reducing its load.
  • Frequency Variations:
    • The speed of a 3-phase motor is directly proportional to the frequency of the power supply. When the frequency deviates from the rated value, the motor’s speed and performance can be affected.
    • If the frequency increases, the motor’s speed will also increase, resulting in higher torque and power output. Conversely, a decrease in frequency will lead to a decrease in speed, resulting in reduced torque and power output.
    • 3-phase motors can handle frequency variations up to a certain extent. However, if the frequency deviates too far from the rated value, the motor’s performance may become unstable or it may fail to start altogether.
    • For precise control over motor speed, variable frequency drives (VFDs) can be used. VFDs can adjust the frequency of the power supply to the motor, allowing for precise speed control and compensation for frequency variations.
  • Voltage and Frequency Tolerance:
    • International standards specify the acceptable voltage and frequency tolerances for 3-phase motors. These standards ensure that motors can operate reliably and safely within specified voltage and frequency ranges.
    • Motor manufacturers often provide voltage and frequency tolerance specifications for their products. These specifications indicate the allowable range of voltage and frequency variations that the motor can handle without compromising its performance or safety.
    • When selecting a 3-phase motor, it is important to consider the voltage and frequency requirements of the specific application and ensure that the motor’s voltage and frequency ratings align with the available power supply.

Overall, 3-phase motors are designed to handle variations in voltage and frequency within specified limits. They incorporate protective devices and can be paired with control devices such as VFDs to compensate for voltage and frequency fluctuations, ensuring optimal performance and protection against potential damage.

China OEM 110kw 12000rpm Air Compressor Permanent Magnet Motor and VFD AC 3-Phase Industrial   vacuum pump belt	China OEM 110kw 12000rpm Air Compressor Permanent Magnet Motor and VFD AC 3-Phase Industrial   vacuum pump belt
editor by CX 2024-05-16