China Professional YEJ Electromagnetic Braking 2.2KW  2poles 90L-2 High Power Three Phase Induction Asynchronous Squirrel Cage AC Motor vacuum pump design

Product Description

Power: 0.55kw-315kw Voltage: 380/400/415V
Frequency: 50/60HZ Pole: 2/4/6/8
Insulation Class: B/F Speed: 3000rpm/1500rpm/1000rpm/750rpm
Protection Grade: IP44/IP55 Frame No.: 80-225
Enamelled Wire: 100% Copper Wire Mounting Way: B3 Foot /B5 Flange /B35 Foot and Flange
Motor body : Cast iron body Brand: FOX MOTOR

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Pump, Fan, Industrial, Machine
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2.4.6.8
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

3 phase motor

What is a 3-phase motor and how does it work?

A 3-phase motor is a type of electric motor that operates on a three-phase power supply. It is widely used in various industrial and commercial applications due to its efficiency, reliability, and ability to provide high torque output. Here’s a detailed explanation of what a 3-phase motor is and how it works:

A 3-phase motor consists of three windings, typically placed 120 degrees apart around the motor’s stator. These windings are energized by a balanced three-phase power supply, which generates a rotating magnetic field within the motor. The rotating magnetic field interacts with the motor’s rotor, causing it to rotate and produce mechanical power.

Here’s a step-by-step explanation of how a 3-phase motor works:

  1. Power Supply: A 3-phase motor requires a three-phase power supply, which typically consists of three alternating current (AC) voltage waveforms that are 120 degrees out of phase with each other. The power supply is connected to the motor’s three windings.
  2. Stator Windings: The stator windings are coils of wire that are wound around the motor’s stator. Each winding is connected to a different phase of the power supply. When the power supply is energized, alternating current flows through each winding, creating a magnetic field around the stator.
  3. Rotating Magnetic Field: The three-phase current flowing through the stator windings creates a rotating magnetic field. The rotating magnetic field is produced because the three phases are out of phase with each other by 120 degrees. This rotating magnetic field is responsible for the motor’s operation.
  4. Rotor: The rotor is the rotating part of the motor. It is typically made of a series of conductive bars or laminated iron cores. The rotor is placed within the rotating magnetic field created by the stator windings.
  5. Induction or Synchronous Operation: Depending on the design of the motor, it can operate as an induction motor or a synchronous motor.
    • Induction Motor: In an induction motor, the rotating magnetic field induces currents in the rotor bars through electromagnetic induction. These induced currents create a magnetic field in the rotor that interacts with the stator’s rotating magnetic field, causing the rotor to rotate. The speed at which the rotor rotates is slightly slower than the speed of the rotating magnetic field, creating a slip. The slip allows the motor to produce torque and overcome inertia or mechanical load.
  6. Mechanical Power Output: As the rotor rotates within the rotating magnetic field, it generates torque. The torque produced by the motor can be used to drive mechanical loads, such as pumps, fans, compressors, conveyors, or machinery. The motor’s speed and torque output can be controlled by adjusting the frequency or voltage of the three-phase power supply, or by implementing control strategies within the motor’s control system.

Overall, a 3-phase motor is a versatile and efficient motor that operates on a three-phase power supply. It works by creating a rotating magnetic field in the motor’s stator through energized windings. This rotating magnetic field interacts with the rotor, causing it to rotate and generate mechanical power. Whether it operates as an induction motor or a synchronous motor, the 3-phase motor is widely used in various industrial applications due to its reliable and high-performance characteristics.

3 phase motor

What safety precautions should be followed when working with 3-phase motors?

Working with 3-phase motors involves electrical and mechanical hazards, so it’s crucial to follow proper safety precautions to reduce the risk of accidents or injuries. Here are some important safety measures to consider:

  • Electrical Safety:
    • Always work on the motor with the power disconnected. Before starting any maintenance or repair tasks, ensure that the motor is de-energized by disconnecting the power supply and locking out/tagging out the electrical circuit.
    • Use appropriate personal protective equipment (PPE), such as insulated gloves, safety glasses, and protective clothing, when working on or near energized parts of the motor. PPE helps protect against electrical shock and other potential hazards.
    • Follow proper lockout/tagout procedures to prevent accidental re-energization of the motor while work is being performed. Lockout/tagout procedures involve using lockout devices and tags to isolate and secure the power source.
    • Ensure that electrical connections, terminals, and wiring are in good condition and properly insulated. Replace any damaged or worn-out components promptly to prevent electrical hazards.
  • Mechanical Safety:
    • Before working on the motor, allow it to cool down if it has been running. Touching hot motor surfaces can cause burns.
    • Securely mount the motor and ensure it is properly supported to prevent it from falling or tipping during maintenance or operation.
    • Avoid wearing loose clothing, jewelry, or anything that could get caught in moving parts. Tie back long hair and remove any dangling accessories.
    • Use appropriate tools and equipment for the task at hand. Follow safe work practices and techniques to minimize the risk of injury, such as using proper lifting techniques and avoiding reaching into rotating parts.
  • Fire and Hazardous Materials Safety:
    • Be aware of flammable or combustible materials in the vicinity of the motor. Keep the motor and its surroundings free from oil, grease, dust, and other potentially combustible substances.
    • Ensure that ventilation openings and cooling fins of the motor are clean and unobstructed. Proper airflow is essential for heat dissipation and preventing overheating.
    • Follow appropriate procedures for handling, storing, and disposing of hazardous materials such as lubricants, solvents, and cleaning agents. Comply with relevant safety data sheets (SDS) and local regulations.
    • Have appropriate fire extinguishing equipment readily available in case of emergencies. Familiarize yourself with the location and proper use of fire extinguishers in your work area.
  • Training and Knowledge:
    • Ensure that personnel working with 3-phase motors receive proper training on electrical safety, lockout/tagout procedures, and safe work practices specific to motor maintenance and repair.
    • Stay updated with the latest industry standards, regulations, and best practices related to electrical and mechanical safety when working with 3-phase motors.
    • Consult the motor manufacturer’s documentation and guidelines for specific safety recommendations and precautions related to their particular motor model.

Remember, safety should always be the top priority when working with 3-phase motors. By following these safety precautions and using common sense, you can help ensure a safe work environment and minimize the risk of accidents or injuries.

3 phase motor

What role do 3-phase motors play in the efficiency of HVAC systems?

3-phase motors play a crucial role in enhancing the efficiency of HVAC (Heating, Ventilation, and Air Conditioning) systems. Here’s a detailed explanation of their contribution:

  • Air Handling Units (AHUs):
    • 3-phase motors are commonly used in HVAC systems to power the fans in air handling units (AHUs). These fans circulate and distribute conditioned air throughout the building.
    • The use of 3-phase motors in AHUs allows for efficient and reliable operation. They can deliver the necessary airflow at varying static pressures, ensuring optimal air distribution and ventilation in different zones of the building.
  • Chillers and Cooling Towers:
    • In large-scale HVAC systems, 3-phase motors are utilized in chillers and cooling towers. These components are responsible for cooling the water used in the HVAC system.
    • Efficient 3-phase motors drive the compressors and fans in chillers and cooling towers, enabling effective heat transfer and temperature control. This results in improved energy efficiency and cooling performance of the HVAC system.
  • Variable Air Volume (VAV) Systems:
    • 3-phase motors are often employed in Variable Air Volume (VAV) systems, which allow for individual control of airflow in different zones or rooms of a building.
    • By using 3-phase motors in VAV systems, the air volume can be easily adjusted to meet the specific cooling or heating demands of each zone. This enables precise temperature control, reduces energy wastage, and enhances overall HVAC system efficiency.
  • Energy-Saving Measures:
    • 3-phase motors in HVAC systems can be integrated with energy-saving measures to improve efficiency. For example, they can be paired with variable frequency drives (VFDs), which allow for the modulation of motor speed and power consumption based on actual needs.
    • VFDs control the speed of 3-phase motors, ensuring that they operate at optimal speeds for different load conditions. This results in significant energy savings, as motors consume less power when operating at lower speeds.
  • Reliability and Durability:
    • HVAC systems require reliable and durable components to ensure continuous operation. 3-phase motors are known for their robust construction and ability to withstand the demanding conditions typically found in HVAC applications.
    • The reliability of 3-phase motors minimizes the risk of motor failures and unexpected downtime, allowing HVAC systems to operate efficiently and maintain occupant comfort.

Overall, 3-phase motors play a critical role in enhancing the efficiency of HVAC systems. They power the fans, compressors, and pumps, enabling effective air distribution, temperature control, and heat transfer. Their integration with energy-saving measures further optimizes energy consumption, resulting in improved overall HVAC system efficiency and reduced operating costs.

China Professional YEJ Electromagnetic Braking 2.2KW  2poles 90L-2 High Power Three Phase Induction Asynchronous Squirrel Cage AC Motor   vacuum pump design		China Professional YEJ Electromagnetic Braking 2.2KW  2poles 90L-2 High Power Three Phase Induction Asynchronous Squirrel Cage AC Motor   vacuum pump design
editor by CX 2024-03-30